Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The use of calcium bearing resources to facilitate solvent regeneration and CO2 reuse via carbon mineralization offers a low energy pathway for the production of calcium carbonate. However, a crucial challenge is the lack of specificity in the formation of various calcium carbonate polymorphs during carbon mineralization. One of the less explored but highly effective approaches to tune the morphology and crystal structure of specific carbonate phases involves tuning vortex flows. This approach is an alternative to utilizing chemical reagents that need to be regenerated for tuning the morphologies and crystalline structures to direct the formation of specific carbonate phases. In this study, the efficacy of using homogeneous vortex flows in limiting the agglomeration of carbonate particles and directing the formation of metastable vaterite phases is discussed and contrasted with the influence of inhomogeneous conventional feed flow patterns on precipitated calcium carbonate (PCC). Herein, a TaylorCouette Carbonate Conversion (TC3 ) reactor is used to direct the formation of spherical vaterite particles with uniform particle size distribution preferentially over calcite and other phases. The formed vortex patterns inside TC3 reactor provide homogeneous reaction spaces conducive to PCC formation, ensuring uniform mixing throughout the process. By increasing the rotational speed and the residence time, higher purity carbonates with more uniform sizes are obtained. Furthermore, preferential vaterite formation is also observed in leachates obtained from alkaline industrial residues such as construction and demolition waste and steel slag. Thus, the proposed approach is effective in harnessing multiple waste streams such as CO2 emissions and alkaline industrial residues to produce calcium carbonate phases such as vaterite with structural and morphological specificity.more » « less
- 
            Abstract Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
